top of page
  • bwbtech

An introduction to Flame photometry

Flame photometry, a technique pioneered by Robert Bunsen and Peter Desaga in the 18th century, has stood the test of time as a valuable tool in scientific analysis. By producing a colourless flame and observing the colour emitted by heated substances, Bunsen and Desaga were able to create a unique spectrum for each substance. This early form of spectroscopy laid the foundation for further advancements in the field, which has since evolved into a sophisticated and powerful scientific discipline.

While spectroscopy has made remarkable strides, it has also become increasingly expensive; particularly for routine laboratory testing that doesn't require its full capabilities. Enter the flame photometer—a cost-effective alternative with numerous applications in biology labs, industry, and wastewater treatment plants, to name a few. It excels in the rapid identification of Group I and Group II alkaline and alkaline earth metals such as sodium, potassium, lithium, barium, and calcium.

The detection of these metals in blood can provide critical insights into nutritional deficiencies and medical conditions. In the food industry, flame photometry enables the quantification of nutrients, ensuring they align with label declarations, while in pharmacology; it serves as a valuable quality control measure.

Compared to its more complex counterparts like gas chromatographs or spectroscopes, flame photometers boast significantly lower operational costs—often just a few pennies per test. Moreover, they offer